نوع مقاله : مقالات پژوهشی

نویسندگان

بوعلی سینا- همدان

چکیده

این مطالعه به تحلیل ساختار فضایی صنعت در اقتصاد ایران و در بین استان‌های مختلف می‌پردازد؛ اینکه ساختار فضایی فعالیت‌های صنعتی در اقتصاد ایران چگونه است و چه عواملی موجب شکل‌گیری چنین ساختاری در صنعت ایران شده است. به‌منظور پاسخ به این سؤالات، ابتدا از شاخص تمرکز الیسون و گلیسر برای ارزیابی ساختار فضایی صنعت در بین استان‌های ایران در دوره 92-1376 استفاده شده و سپس روش تحلیل اقتصادسنجی فضایی و مدل داده‌های تابلویی برای تحلیل اثرات عوامل مؤثر در شکل‌گیری ساختار فوق مورد استفاده قرار گرفته است. نتایج تحلیل نشان می‌دهد ساختار فضایی صنعت در اقتصاد ایران، به‌طور قابل‌توجهی نابرابر است؛ به‌طوری‌که براساس شاخص، استان‌های آذربایجان شرقی، قزوین، مرکزی و تهران، به ترتیب با مقادیر 044/0، 051/0، 052/0 و 063/0، به‌عنوان صنعتی‌ترین استان‌ها بوده و متنوع‌ترین فعالیت‌های صنعتی در این استان‌ها وجود دارد. در مقابل، استان‌های بوشهر، هرمزگان و ایلام هر یک به ترتیب با مقادیر 550/0، 244/0 و 317/0 به‌عنوان استان‌هایی هستند که بخش صنعت در آن‌ها کمترین گسترش را داشته است. ضرایب توان بازاری استان، بازدهی در سطح مقیاس، قیمت هر متر مربع زمین در استان و هزینه حمل‌ونقل هر یک به‌عنوان عوامل در نظر گرفته شده در مدل فضایی به میزان 174/0-، 041/0-، 023/0- و 038/0 برآورد شده است. اما در مقابل، ضرایب متغیرهای متوسط دستمزد پرداختی و مخارج بودجه‌ای دولت، با علامت مثبت برآورد شده است. میزان برآورد شده برای ضریب شدت وابستگی استان‌ها در مدل فضایی (430/0)، نشان می‌دهد که نیروهای مرکزگرای موجود در داخل استان‌ها، غالب بر نیروهای گریز از مرکز بوده است. همچنین نتایج حاصل از شناسایی شبکه وابستگی فضایی بین استان‌ها، نشان می‌دهد به‌طور متوسط استان‌های تهران، قم، قزوین و مرکزی با وقوع تغییر در متغیرهای توضیحی مدل فضایی در این استان‌ها، دارای بیشترین ضریب توانایی اثرگذاری و جذب تغییرات ایجاد شده می‌باشند. استان‌های سیستان و بلوچستان و هرمزگان نیز استان‌هایی هستند که به‌طور متوسط، پایین‌ترین ضریب توانایی اثرگذاری و ظرفیت جذب تغییرات ایجاد شده را دارند.

کلیدواژه‌ها

عنوان مقاله [English]

The Analysis of the Spatial Structure of Industrial Activities in Iran’s Economy

نویسندگان [English]

  • Nader Mehregan
  • Younes Teymourei

Bu-Ali Sina University

چکیده [English]

Introduction
The main purpose of this study is the spatial investigation of the industrial structure among Iran’s provinces and the matters that can effect this formed structure. In fact, the underlying spatial structure of industry which shapes the economy is the result of the spatial dependence on the different parts of that economy due to which the centripetal and centrifugal forces come to existence. This study analyses the spatial structure of industry in the Iranian economy. Therefore, the vital questions raising here are how is the spatial structure of the industrial activities in this economy? Whether or not this structure associates with the spatial inequality? What factors cause the formation of such structure in the present industry? And eventually, knowing whether spatial dependence on different provinces of Iran, could be an important channel to construct this structure. These various issues are addressed in this study. Geographers and economists alike have sought to develop indices that capture inequality across industries, time, and space. In the first section, we present the ideal index of spatial concentration i.e., Ellison and Glaeser index (1997). This will allow us to find out how spatial inequalities imply new and specific constraints. Then, the approach that consists of regressing industry-specific indices of spatial concentration on a number of explanatory variables suggested by theoretical models, such as the intensity of increasing returns, the level of trade costs, or the market potential is considered.
Methodology
In order to answer the questions of this study, Ellison and Glaeser (1997) concentration index has been used to evaluate the industrial spatial structure between the provinces of Iran. As this measurement has been done within the period of 1997-2013 and is based on the two-digit industries (ISIC classified), the effective factors forming the structure of industrial activities which have estimated the spatial econometric model of the time should be identified. The analytical model used in this study is Spatial Autoregressive Panel Data model (SAR Panel Data). An important point is that in spatial regression models each observation corresponds to a location or region. In other words, this model could consider the dependence between the regions or sections. Spatial dependence reflects a situation where values observed at one location or region, say observation i, depends on the values of the neighboring observations at nearby locations. Spatial regression models exploit the complicated dependence structure between observations which represent countries, regions, counties, etc. As a result, the parameter estimates contain a wealth of information on the relationships among the observations or regions. A change in a single observation (region) associated with any given explanatory variable will affect the region itself (a direct impact) which can potentially affect all the other regions indirectly (an indirect impact). In fact, the ability of spatial regression models to capture these interactions represents an important aspect of spatial econometric. An implication of this is that a change in the explanatory variable for a single region (observation) can potentially affect the dependent variable in all other observations (regions). This is of course a logical consequence of our SDM model, since the model takes into account other dependent regions and the explanatory variables. This type of development has wide-ranging implications for the interface of economic theory and econometrics. It suggests that spatial econometric models may be applicable to many situations where they have not previously been employed.
Results and Discussion
The results of EG indicator show that the spatial structure of industry in the economy is considerably unequal. Thus, based on this inequality, Azarbaijan sharghi, Qazvin, Markazi, and Tehran with values of .044, .051, .052 and .063 for spatial concentration index perspectively, are the most industrialized Provinces. In contrast, Bushehr, Hormozgan, and Ilam with values of .550, .244, and .317 are as the least developed provinces in the industry sector and have only certain industrial activities. In the next phase of the study, results of estimating spatial econometric model show that coefficients of market potential, return to scale, price per square meter of land in the province, and the transportation costs in spatial model, each one is estimated as -.174, -.041, -.023, and.038, respectively. In contrast, the coefficients of the variables of average wages and budget expenses of government is estimated with positive values. The estimation of the rate of dependence coefficient on provinces in spatial model (.430) shows that the centripetal forces in the provinces can dominate the centrifugal forces. In addition, due to existance of spatial dependence, we can identify extensive network of interdependences among provinces and their potentials impact on the structure of industry. Also, we can analyze the province's capacity to absorb changes in any of the mentioned factors that affect the structure. Results from the identified extensive network show that provinces of Tehran, Qom, and Qazvin have the highest coefficient of effectiveness and the highest ability to absorb the changes generated in the explanatory variable. Besides, Sistan and Baluchestan and Hormozgan provinces on average, have the lowest coefficient of effectiveness and the ability to absorb the changes generated in the explanatory variables.

کلیدواژه‌ها [English]

  • (Spatial Structure
  • EG Spatial Index
  • Spatial Dependance matrix
  • Spatial AutoRegressive Model (SAR
[1] Acs, Z. J., & Armington, C. (2006). Entrepreneurship, geography, and American economic growth. Cambridge University Press
[2] Akbari, N., Shokoufeh, F., & Somayyeh, J. (2011). Spatial analysis of impact of government fiscal policies on income inequality in Iran, with Geographic Weighted Regression (GWR). Journal of Quantitative Economics (Former economic survey), 8 (3), 1-25, (in persian).
[3] Baldwin, R., Forslid, R., Martin, P., Ottaviano, G., & Robert-Nicoud, F. (2003). Economic Geography and Public Policy. Princeton University Press
[4] Baldwin, R. E., & Krugman, P. (2004). Agglomeration, integration and tax harmonisation. European Economic Review, 48(1), 1-23
[5] Bazzazan, F., Banouei, A., & Karami, M. (2009). Analysis of feedback and spillover impacts, By Two-Region input- output pattern (case study of Tehran and National economy). Journal of Iranian economic researches, 13(39), 29-52, (in persian)
[6] Beaudry, P., Green, D. A., & Sand, B. M. (2014). Spatial equilibrium with unemployment and wage bargaining: Theory and estimation. Journal of Urban Economics, 79, 2-19
[7] Combes, P. P., Mayer, T., & Thisse, J. F. (2008). Economic geography: The integration of regions and nations. Princeton University Press
[8] Combes, P. P., Duranton, G., & Gobillon, L. (2008). Spatial wage disparities: Sorting matters!. Journal of Urban Economics, 63(2), 723-742
[9] Dadashpour, H., Fathjalali, A. (2013). Analysis on regional especializing patterns and spatial concentration of industries in Iran. Journal of Regional Planning, 3 (11) pp. 1-18, (in persian).
[10] Drucker, J., & Feser, E. (2012). Regional industrial structure and agglomeration economies: An analysis of productivity in three manufacturing industries. Regional Science and Urban Economics, 42(1), 1-14
[11] Elhorst, J. P. (2014). Spatial econometrics: from cross-sectional data to spatial panels (pp. 20-25). Heidelberg: Springer
[12] Ellison, G., & Glaeser, E. L. (1997). Geographic concentration in US manufacturing industries: a dartboard approach (No. w4840). National Bureau of economic research.
[13] Ellison, G., Glaeser, E. L., & Kerr, W. R. (2010). What causes industry agglomeration? Evidence from coagglomeration patterns. The American Economic Review, 100(3), 1195-1213.
[14] Figueiredo, O., Guimaraes, P., & Woodward, D. (2014). Firmworker matching in industrial clusters. Journal of Economic Geography, 14(1),1-19
[15] Fujita, M., & Thisse, J. F. (2009). New economic geography: an appraisal on the occasion of Paul Krugman's 2008 Nobel Prize in Economic Sciences. Regional Science and Urban Economics, 39(2), 109-119
[16] Fujita, M., Krugman, P. R., & Venables, A. (1999). The spatial economy: Cities, regions, and international trade. MIT press
[17] Head, K., & Mayer, T. (2004). Market potential and the location of Japanese investment in the European Union. Review of Economics and Statistics, 86(4), 959-972
[18] Helpman, E. (1998). The size of regions. Topics in public economics: Theoretical and applied analysis, 33-54
[19] Kalantari, K.h. (2012). Quantitative models in planning (Regional, Urban and Rural). Farhang Saba Press, Tehran, (in persian)
[20] Kanbur, R and Venables, A.J. (2005). Spatial Inequality and Development . United Nations University World Institute for Development Economics Research (UNU-WIDER). By Oxford UniversityPress Inc. 2005
[21] Krugman, P. R. (1979). Increasing returns, monopolistic competition, and international trade. Journal of international Economics, 9(4), 469-479
[22] Krugman, P,. (1991). Increasing Returns and Economic Geography. The Journal of Political Economy, 99( 3), 483- 499
[23] Krugman, P., & Venables, A. (1993). Integration, specialization, and the adjustment (No. w4559). National Bureau of Economic Research
[24] Lasage, J,. Pace, K. (2013). Introduction to spatial econometrics. Translated in Farsi by: Jalaie, E, A., Jamshidnezhad, A. 2013, Noure Elm Press. First Edition. (in persian)
[25] Lasage, J,. Pace, K. (2013). Spatial econometric theory and techniques in MATLAB. Translated in Farsi by: Jalaie, E, A., Jamshidnezhad, A., & Taleghani, F. 2013, Noure Elm Press. First Edition. (in persian)
[26] Lu, J., & Tao, Z. (2009). Trends and determinants of China's industrial agglomeration. Journal of urban economics, 65(2), 167-180
[27] Mehregan, N., Teymourei, Y. (2013). Industrial location with spatial economics approach. Bu-Ali Sina University Press, First Edition, 2013. (in persian)
[28] Mehregan, N., Teymourei, Y. (2012). Evaluating provincial geographic concentration of industry and effective factors on it in Iran. Journal of Geography and Regional urban planning, 5, pp. 105- 120. (in persian)
[29] Mehregan, M. (2008). quantitative models for evaluating the performance of organizations- DEA. Published by: Management Department of University of Tehran. Second Edition, 2008. (in persian)
[30] Sanches, G. R. (2012). Essays on urban and spatial economics. A thesis submitted to the Department of Geography of the London School of Economics for the degree of Doctor of Philosophy. London. March 2012.
[31] Santos, G. F., Haddad, E. A., & Hewings, G. J. (2013). Energy policy and regional inequalities in the Brazilian economy. Energy Economics, 36, 241-255
[32] Statistical Center of Iran. (2017). Annual Review (2017).
[33] Takahashi, T. (2004). Spatial competition of governments in the investment on public facilities. Regional Science and Urban Economics, 34(4), 455-488
CAPTCHA Image