نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه علامه طباطبائی

2 علامه طباطبایی

3 دانشگاه علامه طباطبایی

چکیده

از میانه قرن بیستم تاکنون، انواع روش‌های غیرآماری در محاسبه ضرایب داده-ستانده منطقه‌ای (RIOCs) و محاسبه جداول داده-ستانده منطقه‌ای (RIOTs) توسط تحلیل‌گران اقتصاد داده-ستانده منطقه‌ای معرفی شده‌اند. در یک طیف، انواع روش‌های سهم مکانی قرار دارند که کانون توجه آنها محاسبه RIOCs است و تراز RIOTs منوط به پذیرش دو پسماند بردار صادرات و بردار ارزش‌افزوده بخش‌های منطقه است. طیف دیگر را روش‌های تراز کالایی (CB) و مبادلات تجاری دوطرفه (CHARM) تشکیل می‌دهند که خاستگاه اصلی آنها، محاسبه RIOTs است که در آن، منظور کردن پسماند ارزش‌افزوده در تراز RIOTs نقش کلیدی دارد. در این مقاله، برخلاف تعداد معدودی از پژوهش‌های انجام گرفته در ایران، نشان داده می‌شود که بکارگیری روش‌های CB و CHARM، ارقام بردار ارزش‌افزوده در حساب‌های منطقه‌ای مرکز آمار ایران را به طور ناخواسته تعدیل می‌کند. این مشاهده، یک سوأل اساسی را پیش‌روی نگارندگان مقاله قرار می‌دهد: چرا بایستی آمارهای رسمی ارزش‌افزوده بخش‌ها را تعدیل نمود؟ برای برون‌رفت از این نقیصه و پاسخ به سوأل مطرح شده، روش‌های ترکیبی جدید CB-RAS و CHARM-RAS پیشنهاد می‌گردد. روش‌های CB، CHARM، CB-RAS و CHARM-RAS در کنار جدول ملی، منطقه‌ای و حساب‌های منطقه‌ای سال 1381 استان گیلان مبنای محاسبه RIOTs استان قرار می‌گیرند. یافته‌های کلی نشان می‌دهند که نخست، روش‌های CB و CHARM، GDP استان را 4/2 درصد کم برآورد می‌کنند. دامنه تعدیل ارزش‌افزوده بخش‌ها قابل ملاحظه است به طوری‌که بخش صنایع وابسته به کشاورزی، 5/9- درصد و بخش معدن 6/54+ درصد را نشان می‌دهد. روش‌های پیشنهادی این نارسائی را برطرف می‌کند. دوم، پنج روش آماری MAD، RMSE، TIL، STPE و WAD مبنای سنجش خطاهای آماری بین ماتریس‌های ضرایب فزاینده عرضه مستخرج از روش‌های ترکیبی CB-RAS و CHARM-RAS با ارقام متناظر واقعی قرار می‌گیرند. یافته‌ها نشان می‌دهد که خطاهای آماری در روش ترکیبی CHARM-RAS به مراتب کمتر از سایر روش‌ها است.

کلیدواژه‌ها

عنوان مقاله [English]

New Mixed CB-RAS and CHARM-RAS Methods for the Estimation of Regional Input-Output Table and Assessing Statistical Error: A Case of Gilan Province

نویسندگان [English]

  • Ali Asghar banouei 1
  • parisa mohajeri 2
  • fatemeh kalhori 1
  • zahra abdolmohammadi 2
  • zahra zabihi 3
  • sahar mohammad karimi 2
  • maryam parsa 2

1 Allameh Tabataba'i

2 allameh tabataba`i

3 allameh tabataba`i

چکیده [English]

Since the 1950s, many types of non-survey methods have been introduced by regional input-output economists for the estimation of Regional Input-Output Coefficients (RIOCs) and Regional Input-Output Tables (RIOTs). On the one hand, there are different kinds of location quotient methods (for example, , , , , , , and ) which focus on estimating RIOCs and balancing RIOTs and which require acceptance of 2 types of residuals: 1)exports of a region to other regions and the rest of the world, and 2)regional sectoral value added. On the other hand, there are Commodity Balance (CB) and Cross-Hauling Adjusted Regionalization Method (CHARM) which concentrate on estimating RIOTs and the regional sectoral value added which play a key role in balancing RIOTs. The application of the CHARM method is not appropriate for estimation of RIOTS in Iran. The main reason is that the use of CHARM method needs two residuals for balancing the RIOT. One of these residuals is the trade balance (exports- imports) and the second one is regional sectoral value added and the regional GDP. Using the former as a residual seems to be plausible for row balancing of RIOTS, whereas the latter unnecessarily adjusts the regional sectoral value added as well as regional GDP. This residual is not appropriate for countries like Iran which have regional accounts. Since 2000, the statistical center of Iran (SCI) has been providing regional accounts for 31 provinces. It comprises of 72 regional sectors which are comparable with national account classifications. The regional accounts of SCI provide us with sectoral intermediate inputs, sectoral value added and sectoral output for 72 sectors for these 31 provinces. If we use CHARM method for regionalizing NIOTs, the regional sectoral value added and the regional GDP given by the SCI have to be ignored due to the inevitability of residual regional sectoral value added.
In this paper, we have shown that the sectoral value added in regional accounts of Iran is adjusted involuntarily due to the use of CB and CHARM for estimation of RIOTs. This issue raises an important question: why should theofficial regional sectoral value added be unnecessarily adjusted? To tackle this problem, the new mixed CB-RAS and CHARM-RAS method is proposed. The new proposed mixed method only takes regional trade balance as a residual and uses the official regional sectoral value added of the regional accounts that have been provided by the statistical center of Iran.
For the application of CB, CHARM, CB-RAS and CHARM-RAS methods, the following data were utilized. 1) Based on the survey- based NIOT of 2001, we updated two NIOT for the year 2002. 2) The regional sectoral intermediate inputs, value added and outputs of Gilan provinces were directly taken from the regional accounts of the SCI. 3) The survey- based RIOTS of this province for the year 2002 were obtained. In order to make the applications of the two methods manageable, the data were aggregated into seven sectors: agriculture, mining, agro-based industries, other industries, water, electricity and gas, construction and services. Based on the CHARM and the proposed mixed CHARM-RAS methods, RIOTS for the province of Gilan for 2002 were generated. The results indicate that the official total value added (GDP) of Gilan province in 2002 was 23401590 billion rials, whereas the corresponding estimated figure derived from the CHARM and CB methods was 22847050 billion rials. This suggests that the CHARM and CB methods underestimate the GDP of Gilan province by 2.4 percentage. Moreover, The regional sectoral value added deviations were calculated. The minimum deviation for agro-based industries was -%9 and the maximum deviation was %+54.6 for mining. To fill this gap, we have proposed the new mixed CHARM-RAS and CB-RAS method to generate RIOTs for the this province. Applying these methods no longer requires the unnecessary adjustments , the regional GDP, and the use of official data. Therfore, the new mixed method eliminates the shortcomings of the previous methods. Moreover, five conventional statistical methods, namely MAD, RMSE, TIL, STPE and WAD were utilized for assessing statistical errors between supply multiplier matrixes which are derived from the new mixed CB-RAS and CHARM-RAS method corresponding to the official figures. The results show that the degree of accuracy of the supply multiplier matrix of the mixed CB-RAS and CHARM-RAS method in all of the five statistical methods is much closer to the official figures than the one gained using CB and CHARM methods independently. Hence, the statistical error of CB-RAS and CHARM-RAS method is much less than the statistical error of CB and CHARM method in supply multipliers.

کلیدواژه‌ها [English]

  • Commodity Balance Method
  • CHARM Method
  • Regional Input-Output Table
  • Mixed CHARM-RAS Method
[1] Banouei, A. A. (2012). Assessing Different Ways of Importing and Its Methods of Separation with Emphasis on the Symmetric Table of 1380, Two Quarterly Economic Policy Papers, No. 85, PP: 31-74. (In Persian)
[2] Banouei, A. A. (2016). Report of the First Phase of the Research Project of the Calculation of the Regional Input-Output Tables for Gilan Province and Its Applications for Identification of Competitive Advantages, Institute of Economics, Faculty of Economics Allameh Tabataba'i University and Organization of Planning and Budget of Guilan Province. (In Persian)
[3] Banouei, A. A., Bazzazan, F & Karami, M. (2006). A Quantitative Study on the Relationship between Space Economy and Input-Output Coefficients in 28 Provinces of the Country, Iranian Journal of Economic Research, No. 29, PP: 143-170. (In Persian)
[4] Banouei, A. A., Mohajeri, P., Kavoosi, S. & Sadagi, N. (2016). Assessing the Accuracies of the Sectoral Multipliers Using the FLQ and CHARM Methods: Case Study of Gilan Province, Iran, 24th International Input-Output Conference and 6th Edition of the International School of Input-Output Analysis, 4-8 July, Seoul, South Korea.
[5] Bazzazan, F, Banouei, A. A. & Karami, M. (2007). More Reflection on New Location Quotient Functions between the Dimensions of the Space Economy and the Regional Input-Output Coefficients, The Case Study of Tehran Province, Iranian Journal of Economic Research, No. 31, PP: 27-54. (in Persian)
[6] Bonfiglio, A. & Chelli, F. (2008). Assessing the Behaviour of Non-Survey Methods for Constructing Regional Input-Output Tables through a Monte Carlo Simulations, Economic System Research, Vol. 20, No. 3, PP: 243-258.
[7] Bonfiqlio, A. (2009). On the Parameterization of Techniques for Researching Regional Economic Structures, Economic Systems Research, Vol. 21, No. 2, PP: 115-127.
[8] Czamanski, S. & Malizia, E. E. (1969). Applicability and the Limitations in the Use of the National Input-Output Tables for Regional Studies, Papers, Regional Science Association, Vol. 23, No.1, PP:65-77.
[9] Dewhurst, J. H. (1992). Using RAS Technique as a Test of Hybrid Methods of Regional Input-Output Tables Updating, Regional Studies, Vol. 26, No. 1, PP: 81-91.
[10] Dietzenbacher, E. & Hoen, R.A. (1998). Deflation of Input-Output Tables from the User’s Point of View: A Heuristic Approach, Review of Income and Wealth, Vol. 43, No. 1, PP: 111-122.
[11] Dietzenbacher, E. & Hoen, R.A. (1999). Double Deflation and Aggregation, Environment and Planning, Vol. 13, No. 3, PP: 1695-1704.
[12] Eurostat (2008). Manual of Supply and Use Tables, Luxemburg.
[13] Flegg, A. T. & Thomo, T. (2016). Refining the Application of the FLQ Formula for Estimating Regional Input Coefficients: An Empirical Study for South Korean Regions, 24th International Input-Output Conference and 6th Edition of the International School of Input-Output Analysis, 4-8 July, Seoul, South Korea.
[14] Flegg, A. T. & Tohmo, T. (2013). Regional Input-Output Tables and the FLQ Formula: A Case Study of Finland Regional Studies, Vol. 47, No. 2, PP: 703-721.
[15] Flegg, A. T. & Webber, C. D. (1996). Using Location Quotients to Estimate Regional Input-Output Coefficients and Multipliers, Local Economic Quarterly, Vol. 40, No.2, PP: 58-86.
[16] Flegg, A. T. Huang, Y. & Tohmo, T. (2015). Using CHARM to Adjust for Cross-Hauling: The Case of the Province of Hubei, China, Economic Systems Research, Vol. 27, No. 3, PP: 391-413.
[17] Flegg, A. T., Mastronardi, L. J. & Romero, C. A. (2016). Evaluating the FLQ and AFLQ Formulae for Estimation of Regional Input-Output Coefficients: Empirical Evidence for the Province of Cordoba, Argentina, Economic Systems Research, Vol. 28, No. 1, PP: 21-37.
[18] Flegg, A. T., Webber, C. D. & Elliot, M. V. (1994). A New Approach to the Use of Location Quotients in Building a Regional Input-Output Model, Using National Data, 25th Annual Conference of Regional Science Association, Trinity College, Dublin, 14-16, 1994.
[19] Flegg, A. T., Webber, C. D. (1995). Using Location Quotients to Build a Regional Input-Output Model: Some Empirical Results for Scotland 26th Annual Conference of Regional Science Association (British and Irish Section) at Cardiff Business School, 12-15 Feb 1995.
[20] Harrigan, F. McGilvray, J. W. & McNicoll, I. H. (1981). The Estimation of Interregional Trade, Flows, Journal of Regional Sciences, Vol. 21, No. 1, PP:65-77.
[21] Homayouni Far, M, Khodaparast Mashhadi, M, Lotfalipoor, M. R. & Tarahhomi, F. (2014). Comparison of the Results of Estimating Regional Input-Output Tables by AFLQ and CHARM Methods, The Case Study of Khuzestan Province, Journal of Quantitative economics, Vol. 11, No. 3, PP: 1-26. (In Persian)
[22] Homayouni Far, M, Khodaparast Mashhadi, M, Lotfalipoor, M. R. & Tarahhomi, F. (2016). Comparison of the Results of Estimating Regional Input-Output Tables by AFLQ and CHARM Methods, The Case Study of Bushehr Province, Journal of Economic Research and Policy, Vol. 24, No. 77, PP: 115-138. (In Persian)
[23] Isard, W. (1953). Regional Commodity Flows; the American Economic Review, Vol. 43, No. 2, PP: 167-180.
[24] Jackson, R. (2014). Cross-Hauling Input-Output Tables: Comments on CHARM, Regional Research Institute, Working Paper Series, No.2.
[25] Jiang, X., Dietzenbacher, E. & Los, B. (2010). Targeting the Collection of Superior Data for the Estimation of Regional Input-Output Table, Environment and Planning, No, 142, PP: 2508-2526.
[26] Kowalewski, J. (2015). Regionalization of National Input-Output Tables: Empirical Evidence on the Use of the FLQ Formula, Regional Studies, Vol. 40, PP: 240-250.
[27] Kronenberg, G. T. (2009). Construction of Regional Input-Output Tables Using Non-Survey Methods: The Role of Cross-Hauling, International Regional Science Review, Vol. 32, No. 1, PP: 40-64.
[28] Kronenberg, G. T. (2012). Regional Input-Output Models and the Treatment of Imports in the European Systems of Accounts, Review of Regional Research, Vol. 32, PP: 175-191.
[29] Lahr. M. (2001). A Strategy for Producing Hybrid Regional Input-Output Tables, in M. L. Lahr and E. Dietzenbacher (eds.) Input-Output Analysis: Frontiers and Extension, Palgrave, Great Britain, PP: 211-244.
[30] Malizia, E. E. & Bond, D. L. (1974). Empirical Tests of the RAS Method of Interindustry Coefficient Adjustment, Journal of Regional Science, Vol. 14, No. 2, PP: 355-365.
[31] Mc Menamin, D. G. & Haring, J. E. (1974). An Appraisal of Non Survey Techniques for Estimating Regional Input-Output Models, Journal of Regional Science, Vol. 14, No. 3, PP: 191-205.
[32] Moore, M. T. & Petersen, J.W. (1955). Regional Analysis: An Interindustry Model of Utah, Review of Economics and Statistics, Vol. 37, No. 4, PP:368-383.
[33] Morrison, W. I. & Smith, P. (1974). Non Survey Input-Output Techniques at the Small Area Level: An Evaluation, Journal of Regional Science, Vol. 14, No. 1, PP:1-14.
[34] Pasha Zanus, P, Banouei, A. A. & Bahrami, J. (2012). Policy Analysis Importance in Determining the Importance of Sectors of the Iranian Economy, Journal of Bulletin Commercial, No. 67, PP: 81-100. (In Persian)
[35] Pigozzi, B. W. M. & Hinojosa, R. C. (1985). Regional Input-Output Inverse Coefficients Adjusted from National Tables, Growth and Change, Vol. 16, No. 1, PP: 8-12.
[36] Richardson, H. W. (1985). Input-Output and Economic Base Multipliers: Looking Backward and Forward, Journal of Regional Science, Vol. 25, No.4, PP: 607-661.
[37] Round, J. I. (1972). Regional Input-Output Models in the U.K.: A Reappraisal of Some Techniques, Regional Studies, Vol. 6, No. 1, PP: 1-9.
[38] Round, J. I. (1978a). An Interregional Input-Output Approach to the Evaluation of Non Survey Methods, Journal of Regional Science, Vol. 18, PP: 179-194.
[39] Round, J. I. (1978b). On Estimating Trade Flows in Interregional Input-Output Models, Regional Science and Urban Economics, No, 8, PP: 284-302.
[40] Round, J. I. (1983). Non-Survey Techniques: A Critical Review of the Theory and The Evidence, International Regional Science Review, No. 8, PP: 189-212.
[41] Scaffer, W. A. & Chu, K. (1969). Non-Survey Techniques for Constructing Regional Interindustry Models; Papers and Proceedings of the Regional Science Association, Vol. 23, No. 1, PP:83-101.
[42] Statistical Center of Iran. (2013). Guid to Compiling, Calculating and Evaluating Regional Accounts in 2012, Tehran, Iran. (In Persian)
[43] Tobben, J. & Kronenberg, T. (2015). Construction of Multi-Regional Input-Output Tables Using CHARM Methods, Economic Systems Research, Vol. 27, No. 4, PP: 487-507.
[44] United Nations. (2008). Systems of National Accounts, 2008, New York, Washington, D.C.
CAPTCHA Image