نوع مقاله : مقالات پژوهشی

نویسندگان

شهید باهنر کرمان

چکیده

در این مطالعه تلاش شده است تا تغییرات مصرف انرژی با استفاده از رویکرد تحلیل تجزیه شاخص و روش میانگین شاخص دیوژیا در سال 1390 برای استان‎های ایران بررسی شود[1]. تجزیه مکانی با استفاده از مدل چند منطقه‌ای  برای مصرف انرژی انجام شده است. نتایج نشان می‎دهد در رتبه‎بندی اثر شدت سیستان و بلوچستان با رتبه 1 کمترین توان صرفه‌جویی و تهران با رتبه 31 بیشترین توان صرفه‌جویی را دارند. میانگین کشوری اثر شدت358.46 میلیون تن معادل زغال‌سنگ می‎باشد. استان‎هایی که در زیر مقدار میانگین کشوری اثر شدت قرار گرفته‌اند توان صرفه‌جویی بالاتری دارند و مصرف انرژی کمتری دارند. در رتبه‌بندی اثر ساختار استان کرمان در رتبه 1 و استان خوزستان در رتبه 31 قرار دارد، که به ترتیب دارای کمترین و بیشترین ساختار صنعتی انرژی بری هستند. میانگین کشوری اثر ساختار   77.38- میلیون تن معادل زغال‌سنگ می‎باشد که نشان دهنده عملکرد بهینه تعداد کمی از ساختار صنعت استان‎هاست. در رتبه‌بندی اثر فعالیت استان تهران با رتبه 1 و استان خراسان جنوبی با رتبه 31 در ابتدا و انتهای لیست رتبه‌بندی اثر فعالیت قرار گرفته‌اند. میانگین کشوری اثر فعالیت  281.07- میلیون تن معادل زغال‌سنگ است که 11 استان در بالای این مقدار جای گرفته‌اند. در اثر شدت ترتیب مناطق[2] به‌صورت منطقه پنج، منطقه دو، منطقه سه، منطقه چهار و منطقه یک می‎باشد. در اثر ساختار ترتیب مناطق به‌صورت منطقه دو، منطقه پنج، منطقه یک، منطقه چهار و منطقه سه کشور می‎باشد و درنهایت اثر فعالیت به‌صورت منطقه چهار، منطقه یک، منطقه سه، منطقه پنج و منطقه دو ایران رتبه‌بندی شده است.
 
[1] -ز فراورده‎های نفت سفید، نفت کوره، نفت گاز، بنزین، گاز طبیعی و برق با هم واحد کردن آنها به عنوان یک سبد انرژی استفاده شده است
[2] -در منطقه بندی استان‎های کشور به همجواری، محل جغرافیایی و اشتراکات توجه‎شده است. این منطقه بندی به شرح زیر است ( وزارت کشور،1393)
منطقه1: تهران، قزوین، مازندران، سمنان، گلستان، البرز، قم
منطقه2: آذربایجان شرقی، آذربایجان غربی،اردبیل، زنجان،گیلان، کردستان
منطقه3: کرمانشاه، ایلام، لرستان، همدان، مرکزی، خوزستان
منطقه4: اصفهان، فارس، بوشهر، چهارمحال بختیاری، کهگیلویه و بویراحمد، هرمزگان
منطقه5: خراسان رضوی، خراسان جنوبی، خراسان شمالی، کرمان، یزد، سیستان و بلوچستان

کلیدواژه‌ها

عنوان مقاله [English]

Investigating Energy Consumption Performance in Iranian Provinces: Index Decomposition Analysis

نویسندگان [English]

  • zeinolabedin sadeghi
  • S.A jalaee
  • mahla nikravsh

Shahid Bahonar University of Kerman

چکیده [English]

 
Extended Abstract
Introduction
Decomposition analysis has been extensively used to study the factors of changes of an aggregate indicator over time. Two popular decomposition techniques include index decomposition analysis (IDA) and structural decomposition analysis (SDA). These popular techniques in energy and emission have been developed independently.
For almost two decades, the most widely used index decomposition analysis (IDA) approaches in energy and energy-related gas emission studies have been formulated using Laspeyres  and Divisia index. Index decomposition analysis is now a popular analytical tool for policymaking in the national energy and environmental issues (Ang & Zhang, 2000).
Methodology
The basic IDA identity in energy consumption studies is used to illustrate spatial decomposition analysis for two regions. Assuming that energy consumption of a region is divided into m sectors. Considering that E is the total energy consumption and  is the energy consumption in sector i, A is the overall activity level; Ai is the activity level of sector i; Si is the activity share of sector i (=Ai/A); I is the aggregate energy intensity (=E/A), and Ii is the energy intensity of sector i:
 E =  =                         
When the aggregate energy consumption of the two regions (Region 1 & Region 2) is compared, we may choose the one with a lower consumption (assuming it to be Region 2) as the base region in the comparison. In spatial decomposition analysis, the difference in the aggregate energy consumption between the two regions, denoted as , is decomposed to give the following:
where the terms on the right give the effects associated with differences between the two regions at the overall activity level, the activity mix and the sectoral energy intensity, respectively. In IDA terminology, they are referred to as the activity effect, activity structure effect and energy intensity effect respectively.
Policy makers may wish to know why there are differences among countries, or provinces or states within a country. They also wish to know the implications of these differences and the best course of action to take.
For these purposes, the use of the bilateral– regional (B–R) model or radial–regional (R–R) model provides useful but incomplete information. A more elaborate spatial decomposition analysis model is needed, which we shall introduce in this section.
To reduce the number of decomposition factors and at the same time to avoid the arbitrariness of choosing a benchmark reference in a multi-region spatial decomposition analysis, one solution is to compare each of the target regions with a reference entity given by the mean of the entire group. In energy decomposition analysis, this reference entity has the energy consumption for each sector, and it also has the activity level given by the arithmetic mean of the corresponding values for all the regions in the comparison group. The activity structure and energy intensity for the entity are then calculated from these group mean values (Ang, Xu, & Su, 2015).
We call this multi-regional (M-R) spatial decomposition analysis model, in which the relationships between any of the two regions are obtained indirectly through the results of two relevant direct decomposition analyses. Hence, for a comparison group consisting of n regions, n direct decomposition cases are conducted between each member and the group mean, and  sets of indirect results that can be derived to allow a comparison between any of the two regions. The indirect results for Region 1 and Region 2 are estimated in the following formula:
                                             
where Rμ refers to the benchmark reference, which is the group mean.
Results and Conclusion
In this study, spatial analysis using multi-regional (M-R) model for energy consumption in 2012 was carried out in 31 provinces of Iran. According to the intensity effect based on the obtained ranking, the results of the study showed that Sistan and Baluchestan had the lowest power for saving with a rating of 1, while Tehran had the most power for saving with the rating of 31. The mean national intensity effect was 358,46 million tons of coal equivalent. The provinces which are below the national mean intensity effects had higher savings and lower energy consumption. Kerman Province was first province due to the structure effect of Kerman Province, whereas Khuzestan Province was ranked as the 31st province. They respectively had the minimum and maximum intensity of the industrial structure. The national mean of industrial structure was -77.38 Million tons of coal equivalent which represent the optimal performance of a small number of industry structure governorates.  The national mean of activity effect is equivalent to the -282.07 million tons of coal, where the 11 provinces are at the top of this range. The ranking of different regions of country are respectively region 5, region 2, region 3, region 4, and region 1 for intensity effect; region 2, region 5, region 1, region 4, and region 3 for structural effect, and finally region 4, region 1, region 3, region 5 and region 2 for activity effect.

کلیدواژه‌ها [English]

  • IDA
  • LMDI
  • Energy Consumption
  • Intensity of Energy
  • Energy Performance Index
Ang, B. W. (2005). The LMDI approach to decomposition analysis: a practical guide. Energy policy, 33(7), 867-871.
Ang, B. W., & Choi, K. H. (1997). Decomposition of aggregate energy and gas emission intensities for industry: a refined Divisia index method. The Energy Journal, 59-73.
Ang, B. W., & Zhang, F. Q. (2000). A survey of index decomposition analysis in energy and environmental studies. Energy, 25(12), 1149-1176.
Ang, B. W., Huang, H. C., & Mu, A. R. (2009). Properties and linkages of some index decomposition analysis methods. Energy Policy, 37(11), 4624-4632.
Ang, B. W., Xu, X. Y., & Su, B. (2015). Multi-country comparisons of energy performance: the index decomposition analysis approach. Energy Economics, 47, 68-76.
Ang, B. W., Xu, X. Y., & Su, B. (2015). Multi-country comparisons of energy performance: the index decomposition analysis approach. Energy Economics, 47, 68-76..
Ang, b.w.(2004). Decomposition analysis for policy making in energy: which is the preferred method?. Journal of energy policy.32, 1131-1139.
Ang,B.W., Wang,H.,(2015). Index Decomposition Analysis With Multidimensional and Multilevl Energy data. Journal Energy Economics.51,67-76.
Behboudi, D., Aslaninia, N. M., & Sojoodi, S. (2010). Decomposition and determinants of energy intensity in Iran. Quarterly Energy Economics Review, 7 (26), 105-130. (in Persian)
Choi, K.H., Ang, B.W., (2012). Attribution of Changes in Divisia Real Energy Intensity Index an Extension to Index Decomposition Analysis. Energy Econ. 34, 171–176.
Ferreira Neto,A.B., Perobelli,F.S., Bastos, S.Q.A.(2014). Comparing energy use structures: an input-output decomposition analysis of large economies. Journal energy economics. 43, 102-113.
Hatzigeorgiou, E. Polatidis, H., Haralambopoulos, D. (2008). CO2 Emissions in Greece for 1990-2002: A Decomposition Analysis and Comparison of Results Using the Arithmetic Mean Divasia Index and Logarithmic Mean Divisia Index Techniques. Energy 33, 492-499.
Khalili Araghi, A., Sharzei, G., Barkhordari, S. (2012). A Decomposition Analysis of CO2 Emissions Related Energy Consumption in Iran. Journal of Environmental Studies, 38(1), 93-104. (in Persian)
Sadeghi, Z., Akbarifard, H., & Hashemi, F. (2017). Investigate Energy Efficiency Trend Of Transportation Sector. Quarterly Journal oF Transportation Research. 13,(4). (in Persian)
Sadeghi, Z., horri, H., mohammad mirzaee, A. (2014). Structural decomposition analysis of Iran emission: Input – Output Approaches. Journal of Applied Economics Studies in Iran, 3(10), 145-175. (in Persian)
Shahiduzzaman, Md., Layton, A.(2015). Changes iv CO2 emissions over business cycle recessions and expansions in the united states: a decomposition analysis. Journal applied energy.150, 25-35.
Sun, J. (1998). Changes in energy consumption and energy intensity: a complete decomposition model. Energy economics, 20(1), 85-100.
Wang, C. (2013). Changing energy intensity of economies in the world and its decomposition. Energy Economics, 40, 637-644.
www.cop21paris.org
Xu, X. Y., & Ang, B. W. (2014). Multilevel index decomposition analysis: Approaches and application. Energy Economics, 44, 375-382.
CAPTCHA Image